📚 Heap Tree in Data Structures

 Follow Me

A Heap Tree is a complete binary tree that satisfies the heap property:

  • Complete Binary Tree: All levels are filled except possibly the last, and the last level has all keys as left as possible.

  • Heap Property:

    • In a Max Heap, the parent node ≥ child nodes.

    • In a Min Heap, the parent node ≤ child nodes.

🔧 Types of Heap Tree:

TypeProperty    Root NodeUsage
Max Heap    Parent ≥ Children    Maximum    Priority Queues, Sorting (Heap Sort)
Min Heap    Parent ≤ Children    Minimum    Dijkstra’s Algorithm, Huffman Coding

🔢 Example (Min Heap):

10 / \ 20 15 / \ / 30 40 50

⚙️ Basic Operations:

OperationDescriptionTime Complexity
Insertion()
    Add element and heapify up    O(log n)
Deletion()
    Remove root and heapify down    O(log n)
Peek()
    Get root element (max/min)    O(1)
Heapify()
    Convert array into heap    O(n)

Applications of Heap Tree

  • Priority Queue implementation

  • Heap Sort algorithm

  • Graph Algorithms (Dijkstra, Prim)

  • Scheduling Systems (CPU Scheduling)

Advantages and Diadvantages of Heap Tree




No comments:

Post a Comment

DSA using Python: Assignment - 2: Classes and Objects

Follow Me “In this assignment, we will learn how to use Python classes and objects to build reusable and structured code. The tasks cover re...